2 edition of **Computability** found in the catalog.

Computability

Davis, Martin

- 296 Want to read
- 16 Currently reading

Published
**1974** by Courant Institute of Mathematical Sciences in [New York] .

Written in English

- Recursive functions.,
- Unsolvability (Mathematical logic),
- Computable functions.

**Edition Notes**

Statement | [by] Martin Davis. Notes by Barry Jacobs. |

Contributions | Courant Institute of Mathematical Sciences. |

The Physical Object | |
---|---|

Pagination | v, 248 p. |

Number of Pages | 248 |

ID Numbers | |

Open Library | OL21970003M |

Theory of Recursive Functions and Effective Computability book. Read 3 reviews from the world's largest community for readers. (Reprint of the edition)4/5. This book presents classical computability theory from Turing and Post to current results and methods, and their use in studying the information content of algebraic structures, models, and their relation to Peano arithmetic.

You might also like

Official guide to the museums of economic botany.

Official guide to the museums of economic botany.

Trends in the U.S. industrial heating equipment industry.

Trends in the U.S. industrial heating equipment industry.

Modern Thai Politics

Modern Thai Politics

logic of liberty

logic of liberty

The Dalai Lamas cat and the power of meow

The Dalai Lamas cat and the power of meow

Apartment living

Apartment living

Hydraulics and its applications

Hydraulics and its applications

Severn Tunnel and its pumping station.

Severn Tunnel and its pumping station.

Objectivity and liberal scholarship

Objectivity and liberal scholarship

Rocks and Minerals

Rocks and Minerals

United Nations common country assessment of Malawi

United Nations common country assessment of Malawi

Current problems in North Africa

Current problems in North Africa

GENERAL POINTS/AUTHOR PRACTICES This book is a mathematical, but not at all fully rigorous textbook on computability and recursive functions in 12 chapters on much of the standard theory. Nigel Cutland is/was a Computability book of 'pure' mathematics, hence the strongly mathematical by: Davis's book Computability and Unsolvability () has been called "one of the few real classics in computer science." He is best known for his pioneering work in automated deduction and for his contributions to the solution of Hilbert's tenth by: this book takes you into the world of basic pure math.

it covers the basic elemects of math such as sets, functions, and proofs. but what is really making this book great and far apart from other similiar books is its elaboration of recursive function and computability, and i find it s: 5.

The book introduces the theory of computability and non-computability to the mathematically-comfortable. The theory of recursive functions provides entry to that theoretical territory at the limits of what is computable and what is by: Computability theory originated with the seminal work of Gödel, Church, Turing, Kleene and Post in the s.

This theory includes a wide spectrum of topics, such as the theory of reducibilities and their degree structures, computably enumerable sets and their Cited by: Computability and Logic has become a classic because of its accessibility to students without a mathematical background and because it covers not simply the staple topics of an intermediate logic course, such as Godel's incompleteness theorems, but also a large number of optional topics, Computability book Turing's theory of computability to Ramsey's by: Computability is thus a branch of mathematics which is of relevance also to computer scientists and philosophers.

Computability book students with no prior knowledge of the subject and computer science students who wish to supplement their practical expertise with some theoretical background will find this book of use and Computability and Unsolvability (Dover Books on Computer Science) Martin Davis.

out of 5 stars Kindle Edition. $ Introduction to the Theory of Computation Michael Sipser. out of 5 stars Kindle Edition.

$ A Mathematical Introduction to Logic Herbert B. by: In the s a Computability book of seminal works published by Alan Turing, Kurt Gödel, Alonzo Church, and others established the theoretical basis for computability.

This work, advancing precise characterizations of effective, algorithmic computability, was the culmination. In the remaining chapters, Turing machines are introduced and the book culminates in analyses of effective computability, decidability, and Gödel's incompleteness theorems.

Students who already have some experience with elementary discrete mathematics will find this a Computability book first course, and a number of supplementary chapters introduce Reviews: book is designed to be an introduction to the basic ideas and results of computability theory (or recursiQil theory, as it is traditionally known among mathematicians).

The initial purpose of computability theory is to make precise the intuitive idea of a computable function; that is, a function whose valuesFile Size: 8MB. Chapter Computability true so far. Initially, T0 is the set of axioms in the system. To be a proof of G, TN must contain G.

To be a valid proof, each step should be producible from previous step and. This book is perfectly suited for class work and individual study, successfully achieving the goal of painlessly introducing technical matter in a This highly readable and intuitive introduction to computability theory contains a great many background discussions which introduce the reader to the researched history and philosophical aspects of recursion theory and logic/5(7).

The aim of this textbook is to provide undergraduate students with an introduction to the basic theoretical models of computability, and to develop some of the model's rich and varied structure. Students who have already some experience with elementary discrete mathematics will find this a well-paced first course, and a number of supplementary chapters introduce more advanced concepts.

This book is a general introduction to computability and complexity theory. It should be of interest to beginning programming language researchers who are interested in com-putability and complexity theory, or vice versa.

The view from Olympus Unlike most ﬁelds within computer science, computability and complexity theory dealsFile Size: 1MB.

In the s a series of seminal works published by Alan Turing, Kurt Godel, Alonzo Church, and others established the theoretical basis for computability. This work, advancing precise characterizations of effective, algorithmic computability, was the culmination of intensive investigations into the foundations of mathematics/5.

Written by a leading researcher, Computability Theory provides a concise, comprehensive, and authoritative introduction to contemporary computability theory, techniques, and results.

The basic concepts and techniques of computability theory are placed in. Discrete Structures, Logic, and Computability and millions of other books are available for Amazon Kindle. Learn more. Discrete Structures, Logic, and Computability 3rd Edition by James L.

Hein (Author) › Visit Amazon's James L. Hein Page. Find all the books, read about the author, and more. /5(29). Computability, Complexity, and Languages is an introductory text that covers the key areas of computer science, including recursive function theory, formal languages, and automata.

It assumes a minimal background in formal mathematics. The book is divided into five parts: Computability, Grammars and Automata, Logic, Complexity, and Unsolvability. This book discusses as well the fundamental properties of the partial recursive functions and the recursively enumerable sets.

The final chapter deals with different formulations of the basic ideas of computability that are equivalent to Turing-computability. This book is a valuable resource for undergraduate or graduate Edition: 1.

Classical Computability Theory The foundation, Turing’s analysis In Leary [2] (the text book used locally for the introductory course on logic) the recursive functions are de ned as those that can be represented in elementary number theory.

f: Nk!N is recursive if there is a formula ˚(x 1;;x k;y) such that for all n 1;;n k;mwe. texts All Books All Texts latest This Just In Smithsonian Libraries FEDLINK (US) Genealogy Lincoln Collection.

National Emergency Library. Top Computability, an introduction to recursive function theory Item Preview remove-circle Share or Embed This : In the s a series of seminal works published by Alan Turing, Kurt Gödel, Alonzo Church, and others established the theoretical basis for computability.

This work, advancing precise characterizations of effective, algorithmic computability, was the culmination of Cited by: 7. such as languages, complexity analysis, objects, and computability. Although this book is designed around a one semester introductory course, it should also be suitable for self-study students and for people with substantial programming experience but without similar computer science knowledge.

Critical Acclaim for Computability and Unsolvability: "This book gives an expository account of the theory of recursive functions and some of its applications to logic and mathematics. It is well written and can be recommended to anyone interested in this field.

No specific knowledge of other parts of mathematics is : Dover Publications. Computability is the ability to solve a problem in an effective manner. It is a key topic of the field of computability theory within mathematical logic and the theory of computation within computer computability of a problem is closely linked to the existence of an algorithm to solve the problem.

The most widely studied models of computability are the Turing-computable and μ. The field of mathematical logic dealing with computability and its generalizations has been called "recursion theory" since its early days. Robert I. Soare, a prominent researcher in the field, has proposed (Soare ) that the field should be called "computability theory" instead.

He argues that Turing's terminology using the word "computable" is more natural and more widely understood than the. Not many books from the infancy of computer science are still alive after several decades, but Computability and Unsolvability is the exception.

And The Undecidable is an anthology of fundamental papers on undecidability and unsolvability by major figures in the field including Godel, Church, Turing, Kleene, and Post. Automata and Computability is a class-tested textbook which provides a comprehensive and accessible introduction to the theory of automata and author uses illustrations, engaging examples, and historical remarks to make the material interesting and relevant for : Ganesh Lalitha Gopalakrishnan.

Computability and Logic has become a classic because of its accessibility to students without a mathematical background and because it covers not simply the staple topics of an intermediate logic course, such as Godel's incompleteness theorems, but also a large number of optional topics, from Turing's theory of computability to Ramsey's theorem.4/5.

The interplay between computability and randomness has been an active area of research in recent years, reflected by ample funding in the USA, numerous workshops, and publications on the subject.

The complexity and the randomness aspect of a set of natural numbers are closely related. Traditionally, computability theory is concerned with the complexity aspect. Computability and Unsolvability book.

Read reviews from world’s largest community for readers. Classic text considers general theory of computability, co 4/5. Computability and Logic has become a classic because of its accessibility to students without a mathematical background and because it covers not simply the staple topics of an intermediate logic course, such as Godel's incompleteness theorems, but also a large number of optional topics, from Turing's theory of computability to Ramsey's theorem.5/5(3).

The system comes ready-to-use, loaded with a database containing productivity factors you can use or easily modify for each product application according to the construction environment: commercial or industrial, union or non-union, or region of the country, plus the system comes with a complete database of manufacture and fabricators pricing for all standard mechanical insulation products and.

The book includes both the standard material for a first course in computability and more advanced looks at degree structures, forcing, priority methods, and determinacy.

The final chapter explores a variety of computability applications to mathematics and : $ The following section is based on the chapter “Computability, Formal Systems, and Incompleteness () and the book Computability: Turing, Gödel, Church and Beyond, edited by. Book Description. Computability theory originated with the seminal work of Gödel, Church, Turing, Kleene and Post in the s.

This theory includes a wide spectrum of topics, such as the theory of reducibilities and their degree structures, computably enumerable sets and their automorphisms, and subrecursive hierarchy classifications.

• V. Rayward-Smith,A ﬁrst course in computability, McGraw Hill. An introductory paperback that covers Parts I and III of the course, and some of Part II.

More detailed than this course. • D. Harel, The Science of Computing, Addison-Wesley, A good book for. Soare's old book(mentioned above) is perhaps the most well known text about c.e. (formerly r.e.) languages.

Soare's new book, Turing Computability: Theory and Applications, is very dense but covers many areas and should be used as a refrence. The book is self-contained, with a preliminary chapter describing key mathematical concepts and notations and subsequent chapters moving from the qualitative aspects of classical computability theory to the quantitative aspects of complexity theory.

"Computability is concerned with the question of what computers can do in principle. Since Enderton directly contributed to the very areas that this book covers (computability and computational complexity), he is able to provide a concise and comprehensive firsthand view on the subject.Computer scientists, mathematicians, and philosophers discuss the conceptual foundations of the notion of computability as well as recent theoretical developments.

In the s a series of seminal works published by Alan Turing, Kurt Gödel, Alonzo Church, and others established the theoretical basis for computability. This work, advancing precise characterizations of effective, algorithmic.

Computability and Logic has become a classic because of its accessibility to students without a mathematical background and because it covers not simply the staple topics of an intermediate logic course, such as Godel's incompleteness theorems, but also a large number of optional topics, from Turing's theory of computability to Ramsey's : $